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Abstract Long-distance migration is a widespread pro-
cess evolved independently in several animal groups in
terrestrial and marine ecosystems. Many factors contribute
to the migration process and of primary importance are
intra-specific competition and seasonality in the resource
distribution. Adaptive migration in direction of increasing
fitness should lead to the ideal free distribution (IFD) which
is the evolutionary stable strategy of the habitat selection
game. We introduce a migration game which focuses on
migrating dynamics leading to the IFD for age-structured
populations and in time varying habitats, where dispersal
is costly. The model predicts migration dynamics between
these habitats and the corresponding population distribu-
tion. When applied to Atlantic bluefin tunas, it predicts their
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migration routes and their seasonal distribution. The largest
biomass is located in the spawning areas which have also the
largest diversity in the age-structure. Distant feeding areas
are occupied on a seasonal base and often by larger individ-
uals, in agreement with empirical observations. Moreover,
we show that only a selected number of migratory routes
emerge as those effectively used by tunas.

Keywords Structured population · Ideal free distribution ·
Game theory · Habitat selection · Bluefin tuna

Introduction

Many populations of animals and plants exhibit character-
istic distributional patterns that are related to the ability
of the organisms to move and explore their environment.
Temporal environmental fluctuations result in changes in
population distributions (Morris 2011). Moreover, compe-
tition is among the major driving forces shaping animal
distributions. Passive dispersal from more populated to less
populated habitats reduces intra- and inter-specific com-
petition thus promoting species coexistence and diversity
(MacArthur and Levins 1964; Rosenzweig 1981). Disper-
sal also often involves active habitat selection, which is a
widespread phenomenon in nature and has been described
in many animal populations such as birds (Svärdson 1949),
terrestrial mammals (Wecker 1963; Morris 1987b, 1996),
and fish (Milinski 1979; Berec et al. 2006).

Fitness-based arguments are commonly used to describe
the process of habitat choice (e.g., MacArthur and
Levins 1964; Morris 1989; Křivan et al. 2008). When
moving between different habitats, organisms should pre-
fer those sites that provide them with the highest payoff,
i.e., where their fitness is maximized (Rosenzweig 1981).
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Nevertheless, both individual fitness and habitat selection
typically depend on interactions among individuals, which
usually have the form of a density-dependent relation link-
ing habitat quality and species distribution (Rosenzweig and
Abramsky 1985).

Under negative density dependence (described by logis-
tic growth), if dispersal is cost free and individuals are
omniscient and free to settle at any habitat, the evolutionar-
ily stable strategy corresponds to the ideal free distribution
(IFD) (Fretwell and Lucas 1969; Křivan et al. 2008; Morris
2011). At the IFD, payoffs in all occupied habitats are the
same and larger or equal than those in the unoccupied habi-
tats. Thus, no individual can improve its fitness by choosing
a different habitat.

Although the IFD is a strong theoretical tool to ana-
lyze animals’ spatial distributions, over the past decades,
attempts to validate it led to equivocal results (Mat-
sumura et al. 2010). For example, several studies reported
“under-matching” when animals underuse better habitats
and overuse poorer habitats (for a review see Kennedy
and Gray 1993). These discrepancies between the IFD and
observed distributions are attributed to, e.g., the cost of
moving (Morris 1987a; Åström 1994), imperfect informa-
tion (Matsumura et al. 2010), or stochastic fluctuations in
environmental conditions (Schreiber 2012). An important
aspect that is usually neglected in theoretical studies of habi-
tat selection and migration (but see, e.g., Sutherland and
Parker 1985; Hugie and Grand 1998; Grand and Dill 1999;
Tregenza and Thompson 1998) is the variability among
individuals. In particular, factors related to age or ener-
getic state can contribute to individuals’ perception of the
environment and affect the ability to migrate between habi-
tats. Moreover, the current location of an individual can
also affect the habitat selection process. Indeed, while the
IFD assumes freely moving individuals between habitats,
habitat-connectivity can often be constrained by specific
geographical (e.g., topography) or temporal (e.g., seasonal)
patterns, which can then limit the ability to migrate towards
better habitats. A network of habitats is often a more real-
istic and general description of habitat connectivity for
migratory species (Taylor and Norris 2010; Betini et al.
2015).

For example, migratory species such as the Atlantic
bluefin tuna (BFT) have widely separated feeding and
spawning areas that are distributed over a large latitudinal
gradient. Those habitats are typically exposed to changes in
seasonality and habitat productivity that can affect habitat
payoffs and dispersal dynamics. The species appears to have
evolved a migration strategy that alternates rapid movement
between neighboring regions with periods of continuous
feeding in those areas before a new migration occurs (Block
et al. 2001, 2005; Wilson et al. 2005). Thus, the dispersal
dynamic between distant habitats appears as a multiple step

process by which tunas explore several habitats rather than
a single direct movement toward higher payoff areas.

In this manuscript we present a game theoretical
approach, called the “migration game,” to model migra-
tion dynamics of an age-structured population on a network
of interconnecting habitats that undergo seasonal variation.
In addition, we assume a travel cost that is age specific.
Then, we apply this concept to BFT to predict their seasonal
distribution and their migration routes across the Atlantic.

Theoretical framework

The migration game

We consider an unstructured migratory species in an het-
erogeneous environment consisting of a network with n

habitats.
Distributional processes are assumed to be discrete in

time, and the time step is scaled so that it equals 1. In each
habitat, i, and at each time step, the population abundance,
pi , changes due to migration dynamics:

pi(t + 1) = pi(t) +
n∑

j=1

pj (t)xji(t) −
n∑

j=1

pi(t)xij (t) (1)

where xij (t) (xij (t) ≥ 0,
∑n

j=1xij (t) = 1 for every i =
1, . . . , n) is the per capita migration rate from habitat i to
habitat j within the unit time interval. Thus, total population
abundance P = ∑n

i pi(t) stays constant. We note that if
two sites i and j in the network are not linked, we set xij =
xji = 0.

To define migration rates, we assume that each habitat
is characterized by a negative density-dependent payoff, ui .
If there is a direct link between habitats i and j in the net-
work, then for individuals migrating from i to j , we define
a reward function:

�ij (pi, pj ) = uj (pj ) − cij − ui(pi) (2)

where cij ≥ 0 is the migration cost. This cost includes the
energy needed to migrate between habitats i and j as well
as the energy required for habitat selection and decision
making processes (Bonte et al. 2012).

We consider directed (non-random) movements on the
network and we assume that along migration routes the
reward must be positive, i.e., an individual currently in habi-
tat i will move to habitat j only when the reward of doing
so is positive. Hence at each time step, t , dispersal rates xij

must result in a population distribution that satisfies:

�ij (pi, pj ) ≥ 0. (3)

In the model, motility is restricted by the topology of
the network and we assume that in a single time unit
individuals can migrate to neighboring habitats only (i.e.,
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habitats directly connected to the current animal habitat).
We observe that the rewards (�ij , Eq. 2) are frequency
dependent. Indeed, individual strategies, xij , influence pop-
ulation distribution (pi , Eq. 1), which in turn influences the
rewards.

We define a non cooperative migration game, in which
individuals (players) are characterized by their current habi-
tat i, and strategies of a player in i are given by probabilities
xij , (j = 1, . . . , n) with which the individual moves to
one of the neighboring habitats. The reward of player i is
defined as

∑
j xij�ij where the sum is restricted to those

habitats that are directly connected to habitat i. Solutions
are migration rates x∗

ij that are the Nash equilibria (NE) of
the migration game.

The equilibrium strategy is such that any unilateral
change in the strategy of any individual would result in a
lower reward for the player who changes its strategy. This
implies that for any two habitats j and j ′ such that x∗

ij > 0
and x∗

ij ′ > 0, the rewards must be the same and maxi-
mal (i.e., �∗

ij = �∗
ij ′ ≥ �∗

ik for any connected habitat
k such that xik = 0). A general method to calculate the
migration rates uses linear complementarity problem (LCP;
Mullon 2013; Facchinei and Pang 2003).

Migration rates x∗
ij are then used in the model (Eq. 1) to

define population dynamics on the network.

Distributional equilibrium in a cost-free migration game

We start with the assumption that migration is cost free,
i.e., cij = 0 in Eq. (2). Then the reward function is simi-
lar to those used in habitat selection games (e.g., Hugie and
Dill 1994; Křivan et al. 2008) and the solution of the migra-
tion game converges to the IFD (Pan and Nagurney 1994;
Cressman and Křivan 2006). However, because dispersing
animals are constrained in their movements by existing links
in the habitat network, depending on the topology of the
network, it can take several steps to reach the global IFD.
Indeed at each time step, individuals can move only to habi-
tats that are directly connected to their current habitat. Thus,

at each time step, individuals reach a local IFD in the sense
that directly linked habitats have the same payoffs as we do
not consider the cost of dispersal. As time increases, the IFD
becomes more global, that is, payoffs in additional habitats
get equalized.

To illustrate the relation between migration equilibrium
and distributional equilibrium, we consider a simple case
of three habitats denoted as A, B, C, and two different
network topologies: (a) a fully connected network (Fig.
1a); (b) a network where habitat B is disconnected from
C (Fig. 1b). Each habitat is characterized by a negatively
density-dependent payoff

ui = 1 − pi

Ki

(4)

where Ki is the habitat carrying capacity and pi is the
number of individuals in habitat i = A, B, C. We assume
that initially all individuals, P , occupy habitat C only, i.e.,
pC = P , pA = pB = 0.

When the network is fully connected, our model con-
verges to the IFD in a single time step (Fig. 1a). Since
individuals are free to move in all the habitats in the net-
work, the strategies resulting from the migration game are
those needed to balance the reward function in Eq. (2) for
all the three habitats.

When the network is not fully connected, three time steps
are needed to reach the global IFD (Fig. 1b).

In the first time step, only movements between C and A

are possible on the network because we assume that indi-
viduals can move only between neighboring habitats in a
single time step. Thus, individuals from habitat C can move
in habitat A only, and they do it so that the payoffs in both
habitats are the same (uC = uA). This defines the migra-
tion rates xCA as those that balance rewards (�CA = �AC),
i.e., a local IFD conditions is reached between the two
habitats. In the second time step, individuals that are now
in habitat A have the possibility to migrate into B since
�AB > 0. Moreover, because of this emigration from habi-
tat A, habitat A payoff will increase compared to habitat C

Fig. 1 Convergence of
population distribution to the
IFD in three habitats A (black),
B (dark grey), and C (light
grey). Panel a assumes fully
connected network while panel
b assumes a partially connected
network. Dashed lines show the
IFD. Parameters: KA = 100,
KB = 200, KC = 300, and
total population P = 400
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causing migration from habitat C to A. For example, after
the migration, the payoff in habitat A can be written as

uA = 1 − (pA + xCA − xAB)/KA (5)

with similar expressions for the payoff in habitats B and C.
In this second time step, all individuals that were initially
in habitat A move to habitat B, but this is not enough to
equilibrate payoffs in these two habitats. Thus, after time
step 2, payoffs in habitats C and A are the same and smaller
than is the payoff in habitat B. Only in the third time step,
payoffs in all habitats are equalized and the global IFD is
reached (Fig. 1b).

This example documents that when dispersal is local at
each time step, several steps are needed to reach the global
IFD. In fact, this is because the number of emigrants cannot
be larger than the number of inhabitants.

The effects of costs on the IFD

When travel costs are zero and habitat payoffs are nega-
tive density-dependent, there is a single IFD (Křivan et al.
2008). However, if migration costs are positive, there may
be infinitely many possible IFDs. Indeed, let us consider an
environment consisting of two habitats (i = 1, 2), and let the
habitat payoffs be described by Eq. 4.

The reward of an individual currently in habitat 1 to
migrate to habitat 2 is

�12(p1, p2) = u2(p2) − u1(p1) − c12

and, similarly, the reward of an individual currently in
habitat 2 to migrate to habitat 1 is

�21(p1, p2) = u1(p1) − u2(p2) − c21,

Under the IFD, there is no incentive for individuals to
move and none of these two rewards can be positive. In
particular, when travel costs are neglected, a single IFD

exists at which �12(p1, p2) = �21(p1, p2) = 0 (Fig. 2a).
When travel costs are positive (Fig. 2b), there is a region
of possible distributions under which the reward in neither
habitats is positive. Thus, all these distributions correspond
to IFDs.

The LCP method that we use to calculate numerically the
NE of the migration game selects a single IFD from the set
of possible IFDs. The selected point is on the boundary of
the set of all IFDs, i.e., in the above example it is one of the
two boundary points.

Coupling migration and demographic processes

So far we have considered migration dynamics only. Now,
we combine migration with population demography. This
means that we do not assume anymore that the overall
population abundance is fixed. We consider an age struc-
tured population with S age classes. We assume that in
each time step the population first undergoes migration
and after that it undergoes demographic changes. This can
be represented as Pi(t) → P ′

i (t) → Pi(t + 1), where
Pi(t) = (pi,1(t), . . . , pi,S(t)) is the vector describing age
structure of the population in habitat i at the beginning of
a time step, P ′

i (t) = (p′
i,1(t), . . . , p

′
i,S(t)) is the population

distribution, once individuals have redistributed themselves
according to the migration equilibrium, and Pi(t + 1) =
(pi,1(t + 1), . . . , pi,S(t + 1)) is the new population distri-
bution after the demographic processes (birth, death, and
growth). To represent these processes, in each habitat, we
use a Leslie matrix, i.e., Pi(t + 1) = LiP

′
i (t) where:

Li =

⎛

⎜⎜⎜⎜⎜⎜⎝

qi,1 ri,2 ri,3 ... ri,S−2 ri,S−1 ri,S
gi,1 qi,2 0 ... 0 0 0
0 gi,2 qi,3 ... 0 0 0
... ... ... ... ... ... ...

0 0 0 ... gi,S−2 qi,S−1 0
0 0 0 ... 0 gi,S−1 qi,S

⎞

⎟⎟⎟⎟⎟⎟⎠
(6)

Fig. 2 Reward functions (�ij ) without (panel a) and with (panel b)
migration costs. The plots show rewards of migration for individuals
in habitat 1 (black) and in habitat 2 (grey) as the proportion p of indi-
viduals in habitat 1. For values of p such that the black (grey) line

is above the x-axis, individuals of population 1 (2) have incentive to
migrate. In panel (a), migration costs are zero and a single equilibrium
distribution p = 0.74 exists. In panel (b), migration costs are positive
and there is a set of equilibrium distributions



Theor Ecol (2016) 9:219–232 223

The probability that a fish in age class a −1 at time t will
grow into class a at time t + 1 in habitat i is gi,a . Similarly,
qi,a is the probability that a fish will continue to stay in the
same class, while ri,a is the average number of newborns
(belonging to the class a = 1) produced by individuals at
ages a > 1 in habitat i.

Case study

The ecology of Atlantic bluefin tuna

The Atlantic bluefin tuna (Thunnus thynnus) has evolved
a migratory behavior in which spawning and feeding sites
are separated by large distances, typically spanning 100s to
1000s of kilometers and several degrees of latitude (Mather
et al. 1995; Cury et al. 1998). Spawning sites are located
in temperate-tropical waters (i.e., Mediterranean Sea, Gulf
of Mexico), but feeding sites used by the largest and oldest
individuals are located in northern temperate-boreal waters
(Mather et al. 1995). During the narrow reproductive period,
individuals often display fast trans-Atlantic migrations to
reach the Mediterranean spawning ground (Block et al.
2005; Fromentin 2009). The seasonal south-north migra-
tory behavior exhibited by bluefin tuna has likely evolved

Fig. 3 Network for the bluefin tuna migration game. We consider
eight habitats: GM Gulf of Mexico, BZ Brazil, MN Maine, NA North
Atlantic, NW Norway, BB Bay of Biscay, EA Eastern Atlantic, and MD
Mediterranean. Habitats are defined within a certain spatial range (grey
areas) for which we calculate the average biological productivity that
is assumed to be proportional to the habitat’s carrying capacity. Links
between habitats show the potential migration routes assumed in the
present study

Table 1 Biological characteristics of age classes

Age class Weight Fertility Growth Survival

a w (kg) ra (month−1) g (month−1) q (month−1)

Young 1 0 0.02 0.9

Juvenile 30 0.125 s 0.02 0.9

Adult 100 0.25 s 0.02 0.9

Mature 200 0.5 s 0.02 0.9

Old 500 s 0.02 0.9

to allow individuals to benefit from large biomasses of prey
species in these regions (Cury et al. 1998).

Model implementation

We implement the theoretical framework described above,
to illustrate the spatial dynamics of the Atlantic bluefin tuna.
The time step for the dynamic system is set equal to one
month, and the simulations are extended up to 20 years. We
chose a network of n = 8 habitats (Fig. 3): Gulf of Mex-
ico (GM), Brazil (BZ), Maine (MN), North Atlantic (NA),
Norway (NW), Bay of Biscay (BB), eastern Atlantic (EA),
and Mediterranean (MD). The links between habitats are
selected based on historical migration routes of bluefin tuna
and defined to represent feasible distances that individuals
can cover in 1 month. Moreover, the migratory population
is structured in five age classes: young of the year, juvenile,
adult, mature, and old. We denote by wa the mean weight of
tuna at age class a (Table 1).

Habitat payoffs for an individual of class a in habitat
i ∈ {GM, BZ, MN, NA, NW, BB, EA, MD} at month t are
density dependent:

ui = 1 −
∑

awapi,a

Ki

. (7)

Here, pi,a is the population of age a living in habitat i, Ki

is the time varying carrying capacity of habitat i described
as Ki(t) = Ki(1 + θi cos(π + tπ/6)), where θi ≤ 1 is
a seasonality parameter specific for each habitat (Table 2).
The seasonality parameter is calibrated using mean values
(2003–2011) of the seasonal biological productivity (West-
berry et al. 2008) averaged over the area covered by the
habitat (Fig. 3). Larger coefficients reflect larger seasonal
fluctuations typically at higher latitudes.

The costs for exploring adjacent habitats, cij in Eq. 2,
are difficult to set. This is because the term includes several
processes such as traveling between habitats, comparison of
habitat qualities, and decision-making process to select one
specific habitat (Bonte et al. 2012). Tuna are efficient swim-
mers (Dewar and Graham 1994) and can travel thousands
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Table 2 Characteristics of habitats

Habitat i Mean carrying Seasonal effect θi

capacity Ki

Gulf of Mexico (GM) 130,000 0.2

Brazil (BZ) 20,000 0.1

Maine (MN) 60,000 0.5

North Atlantic (NA) 60,000 0.9

Norway (NW) 40,000 0.8

Bay of Biscay (BB) 100,000 0.6

Eastern Atlantic (EA) 50,000 0.3

Mediterranean (MD) 200,000 0.2

of kilometers within a few days (Block et al. 2001). Hence,
the cost of traveling and exploring different habitats is not
negligible but probably low and most likely depends on the
distance between habitats. Indeed, we assume here that the
cost for habitat identification and selection is a function of
the distance between habitats and we approximate it as:

cij,a = μ
dij

w0.06
a

(8)

where dij is the distance in kilometers between habitat i

and j , while wa is the age-specific average weight that is
proportional to the individual swimming speed. We con-
sider migrations performed at an optimal velocity and it
can be shown (Appendix) that for tunas the optimal swim-
ming speed scales as w0.06

a (Ware 1978). We set the range
of μ = 5 − 150 to analyze the migration game under differ-
ent habitat selection costs, and we test the sensitivity of our
results to this parameter.

The demographic rates in the Leslie matrix (survival qa ,
fertility ra , growth ga ; Eq. 6) are given in Table 1. Fer-
tility coefficients, ra , are non zero only in the spawning
areas: Gulf of Mexico (GM) and Mediterranean (MD). In
our definition of the Leslie matrix (Eq. 6), we assume that
older individuals have higher fertility proportional to some
spawning intensity s (i.e., fecundity). In the model, we
test how the results are affected by different values of s

(Appendix).

Results

Tuna migrations in a stable environment

We first run the model using only the demographic pro-
cesses, without migration or environmental variability, and
set the total bluefin tuna biomass (M = 330 kton). The

simulation converges toward a stable age distribution in the
spawning areas (Gulf of Mexico and Mediterranean) and
zero biomass otherwise. This is the initial condition used in
all the subsequent simulations.

From this initial distribution, we simulate the migration
game in the case of a stable environment with no seasonality
(Ki constant, Table 2). We assume no demographic changes
in the tuna population structure (i.e., the Leslie matrix is the
identity matrix) but consider different costs in the habitat
selection process. Under such assumptions, the migration

(a)

(b)

(c)

(d)

Fig. 4 Distribution of total biomass (M = 330 kton, lines) and age
structure (bars) in the bluefin tuna population across habitats, as pre-
dicted from the migration game equilibrium when no demography or
seasonal changes are considered. Panel a assumes very low (μ = 20)
habitat selection costs, b low (μ = 50) cost, c medium cost (μ = 100),
and d high cost (μ = 150). Different colors (yellow to dark green)
denote the five different age classes (Young, to Old). In panel (d), the
biomass for the Mediterranean habitat is larger than the scale and equal
to MMD = 172 kton
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game on the network converges toward a stable IFD (shown
as the solid line in Fig. 4).

At very low costs (μ = 20), most of the biomass is
aggregated in the spawning areas (MGM = 61 kton and
MMD = 89 kton) and in the Bay of Biscay (MBB = 47 kton)
while the sum of all the other habitats accounts for ≈ 35 %
of the total biomass (Fig. 4a). In this case, the largest
tuna are on both sides of the Atlantic and mainly in habi-
tats MN and BB with Mediterranean (MD) and Gulf of
Mexico (GM) showing the most structured population dis-
tribution. The youngest class (light yellow color) is present
only in the spawning areas and does not migrate to other
habitats.

Increasing the habitat selection costs (μ = 50, Fig. 4b)
has no major effects on the biomass distribution. The dis-
tributions of age classes are also similar to the previous
case with relative changes only in habitats EA and MN.
With a further increase of the cost (μ = 100, Fig. 4c), the

(a) (b)

(c) (b)

(e) (f)

(g) (h)

Fig. 5 Time series of the biomass per age in the eight habitats: a Gulf
of Mexico, b Brazil, c Maine, d North Atlantic, e Norway, f Bay of Bis-
cay, g Eastern Atlantic, and h Mediterranean, calculated with μ = 100
and s = 30. Different colors (yellow to dark green) for the five different
age classes (Young to Old)

population tends to accumulate in the spawning areas while
the most distant habitats tend to become unoccupied. At
very high cost (μ = 150, Fig. 4d), only few habitats are
significantly populated and the majority of tuna biomass is
in the spawning area (MGM = 102 kton, MMD = 172 kton).

Migration game in a seasonal environment

We simulate the habitat selection process under changing
carrying capacity (Ki) and accounting for tuna population
demography (L, Eq. 6, and Table 1).

Seasonal fluctuations in the tuna biomass are evident in
all habitats with the spawning habitats having the lowest
relative biomass variation (Fig. 5). The habitat in Norway
(Fig. 5e) and Brazil (Fig. 5b) are occupied by the
larger/older classes, but have the lowest of the biomasses.
The age-structure in each habitat changes less than the
variability in total biomass, but throughout the season sig-
nificant changes in the age-structure can occur in the eastern
Atlantic and Maine (Fig. 5c, g). Interestingly, the peaks in
biomass in the spawning areas are in April–May while in
the feeding areas they are in July–August as it is commonly
reported (Table 3).

The intensity of migration on the habitat network
depends on the cost of the habitat selection process and
the spawning intensity of the species (Fig. 6). When costs
are low and spawning intensity high (Fig. 6a) the popula-
tion distributes in all available habitats and all migratory
routes are used with the exception of the transatlantic route
MN–EA. The age-structure is different in each area and
highly diversified in the spawning area and in the cen-
tral Atlantic. When the spawning intensity (s) is reduced
(Fig. 6b), the total global biomass also decreases and some
of the routes are used less frequently. In particular, the con-
nections between Brazil and the western Atlantic are much
weaker but the transatlantic connections (GM–EA and MN–
EA) have higher migration flows. This is mainly driven by
very low biomass in Brazil habitat (Fig. 6b). At higher habi-
tat selection costs (Fig. 6c, d), the direct transatlantic routes
connecting habitats GM and MN to EA break down and,
in general, migration rates decrease. Moreover, only larger
individuals appear to exploit the farthest habitats BZ and
NW. Further cost increase (Fig. 6e, f) further diminishes
migration with majority of individuals staying in the spawn-
ing habitats. Distant habitats such as Brazil and Norway
have a very low biomass or are completely unoccupied.

In the case of high cost and low spawning intensity,
the migration strategy is only selected by larger individu-
als while the majority of the population will not distribute
outside the spawning grounds. Most of these patterns are
confirmed also when a more extensive sensitivity analyses
is performed (Appendix).
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Table 3 Seasonal migration phenology of bluefin tuna in the north Atlantic Ocean

Years Region Timing of presence in northern References Notes

feeding areas

1999–2004 West Atlantic; Bay July–September (Block et al. 2005) Data storage tags

of Biscay (DSTs)

1981–2005 Bay of Biscay Day 180-230 (approx.) (Dufour et al. 2010) Timing of immigration

to region based on

commercial CPUE

data

2005–2009 NWAtlantic (Maryland Summer months (Galuardi and Lutcavage 2012) DSTs applied to

to Cape Cod) juveniles

1950s–1970s Norwegian Sea July–September (Aloncle et al. 1972; Mather et al. 1995) Based on commercial

catch data.

2012 East Greenland August–September (MacKenzie et al. 2014) Based on bycatch in

(Denmark Strait) commercial mackerel

fisheries

1996–2003 Contl. shelfbreak south August–October (few in (Olafsdottir and Ingimundardottir 2003) Based on commercial

of Iceland November) CPUE data

1923–1931 Dogger Bank, North Sea Day 190–290 (approx.) (Murray 1932; MacKenzie and Myers 2007) Based on at sea

observations of

schools; similar

patterns seen

from 1912–1922.

1950s–1970s North Sea July–September (Tiews 1978) Based on commercial

fisheries

Southern Gulf of August–October (Vanderlaan et al. 2014) Based on commercial

St. Lawrence, Canada CPUE data

1996–2006 Whole west Atlantic from Seasonal during year (Walli et al. 2009) DSTs

G. Mexico-Newfoundland,

Discussions

Migration modeling

In this article, we introduce a game-theoretical approach to
model habitat selection in migratory populations in envi-
ronments consisting of a network of habitats. The model
describes population-migration dynamics in age-structured
populations and in temporally varying environments. The
model is parametrized and applied to study the seasonal
migration of the Atlantic bluefin tuna.

The results show how changes in the resource level,
population demography, and cost of migration can alter pop-
ulation distribution across large distances. We further show
that only some subset of the available links on the net-
work are effectively selected as migratory pathways while
many other routes are not utilized. This allows us to iden-
tify emerging fish migration routes and to compare these
predictions with observed migration behavior.

The ability of the model to capture some of the features of
tunas migration suggests that this widespread phenomenon
might often emerge as a migration game that explicitly
accounts for active habitat selection.

A fundamental assumption in the model is that migra-
tion is described as a sequential process by which, at each
time step, individuals increase their fitness. This is because
in the migration game, each individual in a given habitat
can—in a single time step—move only to the neighbor-
ing habitats, i.e., those that are locally connected to the
one where the individual is currently located. The migration
occurs when there is an advantage to move, i.e., when the
reward function is positive. Since this function is negatively
density-dependent, its value is affected by the strategies of
other individuals in the populations and it is also affected by
the cost of assessing and commuting between different habi-
tats. At each time step, individuals tend to reach a local IFD
by trying to equalize the local reward functions. In some
cases, this equilibrium cannot be reached in a single time



Theor Ecol (2016) 9:219–232 227

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Map of the network structure at different spawning intensity
(s) and habitat selection cost μ. Simulations are run for 10 years under
seasonal effects and the distribution in December is shown. Habi-
tats are illustrated with circles proportional to the total tuna biomass
and color representing different age classes (between yellow and dark
green from Young to Old age, respectively). Lines connecting the habi-
tats show integral biomass flux during the entire simulation and are
thicker for larger fluxes, while dashed lines are used when no flow is
predicted along the path. aμ = 50 and s = 30 and a total global biomass
M = 496 kton, b μ = 50 and s = 5 and M = 128 kton, c μ = 100 and
s = 30 and M = 424 kton, d μ = 100 and s = 5 and M = 166 kton,
e μ = 150 and s = 30 and M = 374 kton, f μ = 150 and s = 5 and
M = 174 kton

step, because there are not enough individuals living in a
given habitat that can migrate towards connected habitats
with a higher payoffs.

It is relevant to note that the IFD is the ESS of the
habitat selection game (Křivan et al. 2008). However, the
IFD describes the spatial population distribution without
details about the migration process leading to such distri-
bution. Several mechanisms that can lead to IFD have been
described in Cressman and Křivan (2006). In the present
study, we illustrate another possible mechanism assuming
that individuals are myopic and the dynamics are discrete
over time and constrained within a network of habitat.
Depending on the local constraints and the set of individual
strategies, individuals might or might not migrate and reach
a local IFD in each time step of our model. This game on
network is then called the migration game.

The assumption of describing habitat connectivity by
discrete network structure is a generalization of migration
models assuming movements between all pairs of habitats
(a fully connected graph). The network approach easily cap-
tures the existence of geographical, bioenergetic, or life
history constrains, which often break potential migration
routes (Henningsson and Alerstam 2005; Alerstam et al.
2003; Alerstam 2001). The model is also flexible enough
to allow the effects of ocean currents, temperature variabil-
ity, or other environmental changes to be represented using
different costs on each link. Indeed, the cost of migration
between two habitats can affect the reward function and
then can modify the migration equilibrium on the network;
a mechanism which is in agreement with the hypotheses
that changes in migration routes can be driven by climate
change (Walther et al. 2002; Rijnsdorp et al. 2009; Doney
et al. 2012).

Equalization of the local reward functions is consistent
with the ideal free distribution theory (Fretwell and Lucas
1969). We show that at each time step, individuals in the
population distribute according to a local IFD among con-
nected habitats and, in case of stable environment with no
demographic effects, the local equilibrium converges, in
several steps, toward a global IFD on the network (Pan and
Nagurney 1994; Cressman and Křivan 2006). The migra-
tion dynamic we use in the model describes when and how
individuals update their strategies over time. This is known
as revision protocol in game theory (Sandholm 2010) and
is based on two assumptions: myopia and inertia. Myopia
means that individuals assess their strategy based on local
information on costs and payoff opportunities only. Inertia
postulates that individuals do not update their strategy con-
tinuously but instead re-evaluate their decision sporadically,
mainly because very often the environment in which they
live provides a multiplicity of concerns to be solved rather
than a single-minded focus on one strategy (Sandholm
2010). We think that the discrete form of time and space in
our model describes naturally myopic and inertial processes
which are likely to occur in fish populations. Moreover,
compared to a continuous model, the discrete representa-
tion of the space with the network of habitats appears to be
more consistent with the idea of migration corridors, habi-
tat hot spots, and migration stopovers which are typically
found in many species (Rose 1993; Hunter et al. 2003).
However, it is worth noting that, in some species, behaviors
such as migration and dispersal can be genetically prede-
termined and act independently from local environmental
conditions (Dingle and Drake 2007; Dingle 2014). These
“innate evolutionary responses” (Howard 1960) might be
the main drivers for long distance migrations and overcome
the competition response assumed in our study. Identifying
the balance between the role of innate, social, and learning
behaviors in natural migratory species is a challenging task
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which could be a key area for future empirical study (e.g.,
Scott et al. 2014).

Environmental and demographic effects

Seasonality in the resource distribution and competition for
resources are both important mechanisms for the selection
on migration traits. Indeed, in weak seasonal environments,
residency is the behavioral strategy that is selected (Shaw
and Couzin 2013). Our results support those findings and
show that in case of a stable environment, the distribution of
the populations between heterogeneous habitat converges to
the IFD. At the IFD, there is no net dispersal between habi-
tats unless demographic effects are present. Indeed, changes
in population structure can elicit changes in the reward
functions that result in migration. The coupling between
demographic and environmental effects are critical for the
results. Generally, if dispersal dynamics are much faster
than are changes in habitat payoffs, the global IFD at the
current environmental conditions is likely to be reached.
When migration and environmental variability operate on
similar or slower time scales, the animal spatial distribu-
tion may never reach the IFD at the current environmental
state. For this to happen, additional assumptions on disper-
sal are needed to hold (Mobæk et al. 2009; McLoughlin
et al. 2010). In our model, we assume that the popula-
tion can reach a local IFD condition, which translates into
assuming a fast behavioral response to explore neighbor
habitats. The time step used to integrate the discrete model
sets the time scales for behavioral response and environmen-
tal variability. An alternative approach would be to describe
demographic and environmental dynamics as continuous
processes both affecting the migratory behavior with feed-
back on the population dynamics. In such cases, however,
we would have a revision protocol lacking the inertia of the
decision process which we think is common in most natu-
ral populations and could be verified experimentally by, for
example, examining existing data on tagged fish.

The presented model does not explicitly account for the
feedbacks between migration dynamics and fecundity of
the individuals. Indeed, in habitats with higher payoff, one
could expect individuals to grow faster than those in lower
payoff habitat. Whereas we assume fixed demography that
does not depend on habitat occupancy. A more general
model would require accounting for the lifetime integral
fitness of the migrating individuals and would also make
use of inclusive fitness (Hamilton 1964) when migration
spans several generations, e.g., monarch butterfly (Chapman
et al. 2015). In the simple case here, fitness is modeled as
a reward function proportional to carrying capacity while
only the individuals present in the spawning habitats have
positive fecundity values in the Leslie matrix. A finer spa-
tial habitat subdivision and an improved description of the

fitness measure might still be able to capture some of these
complications described above, when the assumption of
time scale separation between demography and behavior
holds.

Relevance to the ecology of the Atlantic bluefin tuna

As we have seen before, Atlantic bluefin tunas have a wide
distribution in the Atlantic Ocean from tropical to sub-polar
areas. Migration has likely evolved to allow migrants to
benefit from the seasonal highly productive environment
at higher latitude while reproducing in different regions.
Being excellent swimmers, bluefin tuna can potentially be
present in all parts of the Atlantic. Nonetheless, evidence
suggests that the species distributes within several hotspot
areas, where tunas are present all year round, while their
abundance outside those areas is minimal. Moreover, the
same individual can visit these hotspots several times dur-
ing the feeding period before going back to spawning areas
for reproduction. Those patterns in distribution and migra-
tion behavior are in part captured by the habitat network
approach used in our model, with a series of hotspot areas
connected by a range of migratory pathways. Moreover, the
model appears to describe reasonably well the peaks in dis-
tribution in the different areas. For example, in the spawning
areas, the maximum abundance is achieved mainly at the
beginning of summer and precedes the peaks in abundances
in the feeding areas. Habitats such as Norway or Brazil
are visited only by the larger individuals (200–500 kg) and
are very sensitive to changes in fishing pressure or cost of
migrations (Fromentin 2009; Safina and Klinger 2008).

Thus, our modeling approach allows to represent, in
a quite realistic way, spatial population dynamics of the
Atlantic bluefin tuna including the disappearance of some
feeding habitats and changes in migration routes.

The modeled estimate of the timing of appearance at
summer feeding areas is similar to the tuna migration phe-
nology observed in nature (Table 3). In addition, the size
composition of the modeled populations arriving in several
of these areas compares favorably with the size composition
of bluefin tuna observed and/or caught in such regions.

For example, modeled size distributions for Brazil and
Norway are centered at large (≈200 cm) sizes. Catch data
from these areas (Mather et al. 1995) show that most bluefin
captured in fisheries in these areas were generally >150–
200 cm, thus similar to model predictions.

Our modeling approach is potentially a useful frame-
work for investigating how exploitation and environmental
variability including climate change could affect the large-
scale migratory behavior and spatial distribution of bluefin
tuna. For example, environmentally driven changes in
regional productivity and environmental carrying capacity
would affect habitat suitability, migration costs (e.g., due to
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temperature changes), and migratory rewards. These
changes can lead to reduced use of some habitats and
stronger preferences for other habitats, thereby potentially
influencing fishery opportunities and costs for different
nations. Such changes may already be underway because
migration phenology for the Bay of Biscay is linked to
large-scale climate conditions (e.g., the North Atlantic
Oscillation, NAO) that affect sea temperatures (Dufour
et al. 2010) and bluefin tuna have recently been observed
in east Greenland where they have not previously been
observed (MacKenzie et al. 2014). Moreover, our modeling
framework, if coupled to integrated oceanographic biogeo-
chemical models (Dragon et al. 2015), can also potentially
derive new insights on the relative roles of oceanographic
variability and exploitation leading to past major changes
in bluefin tuna distributions and fisheries such as those off
Brazil, Norwegian-North Sea, and south of Iceland.

Recent advances in group behavior and information shar-
ing and transfer between individuals of the same group
also show how habitat choice can be influenced by the
knowledge content or migratory experience of the individ-
uals, and how group behavior (e.g., migration to particular
habitats) can be driven by a subset of informed individu-
als (De Luca et al. 2014). A future challenge for migra-
tory behaviour modeling is therefore to develop ways to
integrate individual-level and group dynamics in migra-
tion game modeling frameworks such as that developed
here. Given that bluefin tuna is such a highly migratory
species, and migrates across ocean zoning boundaries of
several jurisdictions, and also across stock management
boundaries, migration models that quantify rates and timing
of exchanges among areas could potentially have practi-
cal application in fishery management and conservation.
The migratory behavior of this species is complex. Our
modeling approach, although moderately complex, is based
on some simplified considerations of population dynam-
ics, regionally dependent ecosystem carrying capacities and
bioenergetics of energy intake and utilization, and is a step
towards process-oriented migration and distribution models.
Further advances in process knowledge and implementation
are needed, and if implemented, could support management
and conservation decision-making for this species.

Although our model has been configured primarily to
represent the large-scale movement dynamics and spatial
distribution of bluefin tuna, the migration game, as defined
here, can be potentially applied to a wide range of highly
migratory species, including other fish species, marine
mammals, and reptiles (e.g., turtles). The persistent migra-
tory cycle of the Pacific white sharks (Carcharodon car-
charias) among a network of coastal hotspots and the open
Pacific (Jorgensen et al. 2009) suggests that the seasonal
movements of the species might be the result of individual
optimization dynamics. The migration game could also be

used to disentangle the relation between migration routes
and wintering strategies in Arctic shorebirds that routinely
perform long distance (>10,000 km) migrations between
the Arctic regions and southern warmer habitats (Hen-
ningsson and Alerstam 2005). Although migratory routes in
marine turtles appear to have been shaped by passive dis-
persion during the hatchling phase (Hays et al. 2010), the
effects of changing conditions in ocean currents (Hays et al.
2014) and food availability (Hawkes et al. 2009) could be
investigated using a theoretical framework similar to what
we describe here. Likewise, migrations of seals, whales, and
other marine apex predators (Block et al. 2011) might be
possibly described by similar migratory dynamics.
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Appendix: Model calibration for Atlantic bluefin
tuna

Migration costs

The time needed to migrate between two habitats regulates
the cost of migration in fish population since the energy con-
sumed will be higher the longer is the migration time. The

Table 4 Scaling of physiological rates with size and parameter values
for tuna from (1) (Overholtz 2006), (2) (Ware 1978), (3) (Dewar and
Graham 1994), and (4) (Block and Stevens 2001)

Parameter Symbol Value Ref.

Max. Energy intake I (w) cwφ –

Standard metabolic rate M(w) α1wγ –

Swimming power P(w) α0wηUβ –

Constant for energy intake c 1 · 10−2 [1]

Exponent for energy intake φ 0.8 [1]

Constant for power cost α0 1.8 · 10−8 [2]

Exponent for power cost η 0.47 [2]

Exponent for power cost β 1.4 < β < 2.8 [3]

(β = 2)

Constant for metabolic cost α1 3.76 · 10−4 [4]

Exponent for metabolic cost γ 0.6 [4]
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power rate consumed while swimming at an optimal speed
(P ) is:

P = α0w
ηUβ (9)

where w is the mass of the fish, while the estimates for
allometric constants α0 and η assume fish swimming in a
turbulent regime (i.e., high Reynolds number) (Ware 1978),
Table 4).

We can assume that during migration fish swim at the
optimal speed (U∗) at which the total energy expenditure
per unit distance is minimized. Using an allometric func-
tion for the metabolic costs M = α1wγ , a general form of
U∗ can be derived by an optimisation procedure relating the
swimming cost to the total cost of moving (metabolic cost
plus power output):

U∗ =
[ −α1wγ

α0wη(1 − β)

] 1
β

(10)

where α1 and γ are allometric constants for fish metabolism
(Table 4). This results in an allometric scaling for the
optimal swimming speed as:

U∗ ≈ w
γ−η

β (11)

In tuna, the exponent β has been found to range between
1.4 < β < 2.8 (Dewar and Graham 1994) and we
assume β = 2.1, which provides swimming speeds
in the range reported for several tuna species (1.2 −
2.4 body length per second) (Block and Stevens 2001).
Thus we obtain a scaling U∗ ≈ w0.06.

Demography

Uncertainties exist on the definition of demographic param-
eters for the bluefin tuna population (Simon et al. 2012). In
our model, the young-of-the-year stage (0–1 years) excludes
the egg phase and does not have reproductive potential while
at juvenile stage (1–5 years), a small fraction is mature

Fig. 7 Age structure data from the ICCAT assessment group (black)
on bluefin tuna and from the model using the Leslie matrix estimates
(red)

Fig. 8 Sensitivity of the population structure and total biomass in
different habitats under different spawning intensity s and habitat
selection cost μ in aseasonal environments

for reproduction. The reproductive maturity increases up to
50 % at the adult stage (5–10 years) while mature (10–
20) and old (20–35) stages are fully reproductive but the
latter has a lower survival rate. Those rates are consistent
with observed maturity at age data for western and eastern
Atlantic bluefin tuna (SCRS 2012) and are used to define
the values of rk . Moreover, the value survival (q) and growth
(g) values used in the Leslie matrix are consistent with
reported values for the yearly mortality rates (SCRS 2012)
and provide a realistic bluefin tuna age-structure (Fig. 7)
with a maximum population growth rate (0.15) that is in the
range of previous estimates (Simon et al. 2012). Finally, we
constrain the global bluefin tuna population using a given
total carrying capacity Kt and assume a density dependent
function on the spawning factor s.

Extended sensitivity analyses

At low spawning intensity and high migration costs
(Fig. 8g), only the spawning areas are occupied. Decreas-
ing habitat selection costs allows tuna to migrate in adjacent
feeding areas (G and C) but reduce the total biomass and
increase fluctuations in the migration behaviour (Fig. 8a, d).
On the other hand, at high spawning and low migration costs
(Fig. 8a, b), the biomass reaches the total carrying capacity
over few months, and all habitats are occupied although at
different levels of biomass.
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